Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PDA J Pharm Sci Technol ; 72(4): 438-450, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29669815

RESUMO

Monoclonality of mammalian cell lines used for production of biologics is a regulatory expectation and one of the attributes assessed as part of a larger process to ensure consistent quality of the biologic. Historically, monoclonality has been demonstrated through statistics generated from limiting dilution cloning or through verified flow cytometry methods. A variety of new technologies are now on the market with the potential to offer more efficient and robust approaches to generating and documenting a clonal cell line.Here we present an industry perspective on approaches for the application of imaging and integration of that information into a regulatory submission to support a monoclonality claim. These approaches represent the views of a consortium of companies within the BioPhorum Development Group and include case studies utilising imaging technology that apply scientifically sound approaches and efforts in demonstrating monoclonality. By highlighting both the utility of these alternative approaches and the advantages they bring over the traditional methods, as well as their adoption by industry leaders, we hope to encourage acceptance of their use within the biologics cell line development space and provide guidance for regulatory submission using these alternative approaches.LAY ABSTRACT: In the manufacture of biologics produced in mammalian cells, one recommendation by regulatory agencies to help ensure product consistency, safety, and efficacy is to produce the material from a monoclonal cell line derived from a single, progenitor cell. The process by which monoclonality is assured can be supplemented with single-well plate images of the progenitor cell. Here we highlight the utility of that imaging technology, describe approaches to verify the validity of those images, and discuss how to analyze that information to support a biologic filing application. This approach serves as an industry perspective to increased regulatory interest within the scope of monoclonality for mammalian cell culture-derived biologics.


Assuntos
Produtos Biológicos/normas , Indústria Farmacêutica/métodos , Citometria de Fluxo/métodos , Tecnologia Farmacêutica/métodos , Animais , Técnicas de Cultura de Células , Linhagem Celular , Células Clonais/citologia , Mamíferos
2.
Tissue Eng Part A ; 24(1-2): 145-156, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28467727

RESUMO

The ability of cells to secrete extracellular matrix proteins is an important property in the repair, replacement, and regeneration of living tissue. Cells that populate tissue-engineered constructs need to be able to emulate these functions. The motifs, KTTKS or palmitoyl-KTTKS (peptide amphiphile), have been shown to stimulate production of collagen and fibronectin in differentiated cells. Molecular modeling was used to design different forms of active peptide motifs to enhance the efficacy of peptides to increase collagen and fibronectin production using terminals KTTKS/SKTTK/SKTTKS connected by various hydrophobic linkers, V4A3/V4A2/A4G3. Molecular dynamic simulations showed SKTTKS-V4A3-SKTTKS (P3), with palindromic (SKTTKS) motifs and SKTTK-V4A2-KTTKS (P5), maintained structural integrity and favorable surface electrostatic distributions that are required for functionality. In vitro studies showed that peptides, P3 and P5, showed low toxicity to human adipose-derived stem cells (hADSCs) and significantly increased the production of collagen and fibronectin in a concentration-dependent manner compared with the original active peptide motif. The 4-day treatment showed that stem cell markers of hADSCs remained stable with P3. The molecular design of novel peptides is a promising strategy for the development of intelligent biomaterials to guide stem cell function for tissue engineering applications.


Assuntos
Matriz Extracelular/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Engenharia Tecidual/métodos , Células Cultivadas , Colágeno/química , Fibronectinas/química , Citometria de Fluxo , Humanos , Peptídeos
3.
Tissue Eng Part A ; 21(19-20): 2504-14, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26101808

RESUMO

BACKGROUND: Scaffolds are a key component of tissue-engineered heart valves (TEHVs). Several approaches had been adopted in the design of scaffolds using both natural and synthetic resources. We have investigated the suitability of parylene C (PC), a vapor deposited polymeric material, for the use as a scaffold in TEHV. AIMS: To evaluate the adsorption of extracellular matrix components onto plasma-activated PC and study the biocompatibility of PC by measuring cellular adhesion, viability, apoptosis, and phenotypic expression of valve endothelial and interstitial cells. Finally, the mechanical properties of PC were compared with those of native aortic valve cusp tissue. METHODS: PC slides were plasma activated and then coated with gelatin, type I collagen, or fibronectin. Porcine pulmonary valve endothelial and interstitial cells were then grown on plasma oxidized PC with different types of coatings and their adhesion was observed after 20 h of incubation. Cell viability was tested using the MTS assay, and apoptosis was estimated using TUNEL staining. The mechanical properties of PC and valve tissue were measured using a Bose Mechanical Tester. Finally, cell-seeded PC films were exposed to pulsatile pressure and aortic shear stress, respectively, to test their durability in a dynamic environment. RESULTS: Our findings show that collagen and fibronectin could bind to plasma oxidized PC. Both valve endothelial and interstitial cells adhered to protein-coated ECM. PC had a profile of mechanical stiffness and ultimate tensile strength that were comparable with or in excess of those seen in porcine aortic valve cusps. Cells were still attached to PC films after 3 days of exposure to up to 50 mmHg pulsatile pressure or aortic levels of shear stress. CONCLUSION: PC is a promising candidate for use as a scaffold in tissue engineering heart valves. Additional studies are required to determine both the durability and long-term performance of cell-seeded PC when in a similar hemodynamic environment to that of the aortic valve.


Assuntos
Polímeros/química , Engenharia Tecidual/métodos , Xilenos/química , Animais , Adesão Celular/fisiologia , Proliferação de Células/fisiologia , Células Cultivadas , Colágeno/química , Fibronectinas/química , Gelatina/química , Próteses Valvulares Cardíacas , Marcação In Situ das Extremidades Cortadas , Suínos , Alicerces Teciduais/química
4.
Growth Factors ; 32(5): 139-49, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25112491

RESUMO

Herein we combine chemical and mechanical stimulation to investigate the effects of vascular endothelial growth factor (VEGF) and physiological shear stress in promoting the differentiation human adipose derived stem cells (ADSCs) into endothelial cells. ADSCs were isolated and characterized; endothelial differentiation was promoted by culturing confluent cells in 50 ng/ml VEGF under physiological shear stress for up to 14 days. Afterwards, endothelial cells were seeded onto collagen or acellular aortic valve matrices and exposed to four culture conditions: shear stress + VEGF; shear stress - VEGF; static + VEGF and static - VEGF. After 7 days, phenotype was investigated. ADSCs subjected to shear stress and VEGF express a comprehensive range of specific endothelial markers (vWF, eNOS and FLT-1 after 7 days and CD31, FLk-1 and VE-cadherin after 14 days) and maintain the phenotype when seeded onto scaffolds. Our protocol proved to be an efficient source of endothelial-like cells for tissue engineering based on autologous ADSC.


Assuntos
Adipócitos/citologia , Tecido Adiposo/patologia , Células Endoteliais/citologia , Fator A de Crescimento do Endotélio Vascular/farmacologia , Animais , Antígenos CD/metabolismo , Valva Aórtica/patologia , Caderinas/metabolismo , Diferenciação Celular , Sobrevivência Celular , Células Cultivadas/citologia , Colágeno/metabolismo , Perfilação da Expressão Gênica , Humanos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Fenótipo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Resistência ao Cisalhamento , Estresse Mecânico , Suínos , Engenharia Tecidual/métodos , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Fator de von Willebrand/metabolismo
5.
Biomaterials ; 35(6): 1833-44, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24314554

RESUMO

Cells environment is increasingly recognized as an important function regulator through cell-matrix interactions. Extracellular matrix (ECM) anisotropy being a key component of heart valves properties, we have devised a method to create highly porous anisotropic nanofibrillar scaffolds and studied their suitability as cell-support and interactions with human adipose derived stem cells (hADSCs) and human valve interstitial cells (hVICs). Anisotropic nanofibrillar scaffolds were produced by a modified jet-spraying method that allows the formation of aligned nanofibres (600 nm) through air-stream diffraction of a polymer solution (poly (ε-caprolactone, PCL) and collection onto a variably rotating drum. The resulting matrices of high porosity (99%) mimicked valve mechanical anisotropy. Dynamically seeded hADSC and hVIC cultured on scaffolds up to 20 days revealed that hADSC and hVIC penetration within the matrices was improved by anisotropic organization. Within 10 days, cells populated the entire scaffolds thickness and produced ECM (collagen I, III and elastin). As a result, mechanical properties of the constructs were improved over culture, while remaining anisotropic. In contrast to isotropic matrices, anisotropy induced elongated hADSCs and hVICs morphology that followed nanofibres orientation. Interestingly, these morphological changes did not induce hADSC differentiation towards the mesoderm lineages while hVIC recovered a physiological phenotype over culture in the biomimetic matrices. Overall, this study indicates that highly porous anisotropic jet-sprayed matrices are interesting candidates for valve tissue engineering, through anisotropic mechanical properties, efficient cell population, conservation of stem cells phenotype and recovery of hVIC physiological phenotype.


Assuntos
Valvas Cardíacas , Engenharia Tecidual/métodos , Materiais Biocompatíveis/química , Células Cultivadas , Humanos
6.
J Cell Biochem ; 113(9): 2967-78, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22552967

RESUMO

Several factors affect the skeletal muscle differentiation process, in particular modifications of cell-cell contact, cell adhesion, and plasma membrane characteristics. In order to support the role of the plasma membrane-associated sialidase NEU3 in skeletal muscle differentiation and to analyse which events of the process are mainly affected by this sialidase, we decided to stably over-express MmNEU3 in C2C12 cells by a lentiviral vector and to investigate cell behavior during the differentiation process. Vitally stained C2C12 and NEU3 over-expressing cells were counted to reveal modifications in differentiation induction. We found that NEU3 over-expressing cells remained proliferative longer than control cells and delayed the onset of differentiation. Expression of p21, myogenic transcription factors, and myosin heavy chain (MHC), assessed by real time PCR, confirmed this behavior. In particular, no MHC-positive myotubes were present in NEU3 over-expressing cells as compared to wild type C2C12 cells at day 3 of differentiation. Moreover, NEU3 over-expressing cells completed the differentiation process very quickly and formed hypertrophic myotubes. Analysis of MAPK/ERK pathway activation showed an increased ERK 1/2 phosphorylation in NEU3 over-expressing cells at the beginning of differentiation. We postulate that sialidase NEU3, decreasing plasma membrane ganglioside GM3 content, affects the EGF receptor and the downstream signaling pathways, promoting proliferation and delaying differentiation. Furthermore NEU3 improves myoblast fusion probably via neural-cell adhesion molecule (NCAM) desialylation. Therefore, this work further supports the central role of NEU3 as a key modulator in skeletal muscle differentiation, particularly in the myoblast fusion step.


Assuntos
Diferenciação Celular/fisiologia , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/metabolismo , Mioblastos/citologia , Mioblastos/metabolismo , Neuraminidase/metabolismo , Animais , Diferenciação Celular/genética , Linhagem Celular , Membrana Celular/metabolismo , Cromatografia Líquida de Alta Pressão , Gangliosídeo G(M3)/metabolismo , Immunoblotting , Camundongos , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Neuraminidase/genética , Fosforilação , Reação em Cadeia da Polimerase
7.
J Leukoc Biol ; 88(6): 1227-39, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20826611

RESUMO

Removal of sialic acid from glycoconjugates on the surface of monocytes enhances their response to bacterial LPS. We tested the hypothesis that endogenous sialidase activity creates a permissive state for LPS-induced cytokine production in human monocyte-derived DCs. Of the four genetically distinct sialidases (Neu1-4), Neu1, Neu3, and Neu4 are expressed in human monocytes, but only Neu1 and Neu3 are up-regulated as cells differentiate into DCs. Neu1 and Neu3 are present on the surface of monocytes and DCs and are also present intracellularly. DCs contain a greater amount of sialic acid than monocytes, but the amount of sialic acid/mg total protein declines during differentiation to DCs. This relative hyposialylation of cells does not occur in mature DCs grown in the presence of zanamivir, a pharmacologic inhibitor of Neu3 but not Neu1, or DANA, an inhibitor of Neu1 and Neu3. Inhibition of sialidase activity during differentiation to DCs causes no detectable change in cell viability or expression of DC surface markers. Differentiation of monocytes into DCs in the presence of zanamivir results in reduced LPS- induced expression of IL-6, IL-12p40, and TNF-α by mature DCs, demonstrating a role for Neu3 in cytokine production. A role for Neu3 is supported by inhibition of cytokine production by DANA in DCs from Neu1⁻/⁻ and WT mice. We conclude that sialidase-mediated change in sialic acid content of specific cell surface glycoconjugates in DCs regulates LPS-induced cytokine production, thereby contributing to development of adaptive immune responses.


Assuntos
Citocinas/biossíntese , Células Dendríticas/imunologia , Lipopolissacarídeos/farmacologia , Neuraminidase/fisiologia , Animais , Diferenciação Celular , Gangliosídeo G(M3)/metabolismo , Humanos , Camundongos , Monócitos/citologia , Ácido N-Acetilneuramínico/análise , Neuraminidase/antagonistas & inibidores , Receptor 4 Toll-Like/fisiologia
8.
J Leukoc Biol ; 81(1): 284-96, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17028199

RESUMO

Sialidases influence cellular activity by removing terminal sialic acid from glycoproteins and glycolipids. Four genetically distinct sialidases (Neu1-4) have been identified in mammalian cells. In this study, we demonstrate that only lysosomal Neu1 and plasma membrane-associated Neu3 are detected in freshly isolated and activated human T lymphocytes. Activation of lymphocytes by exposure to anti-CD3 and anti-CD28 IgG resulted in a ninefold increase in Neu1-specific activity after growth of cells in culture for 5 days. In contrast, the activity of Neu3 changed minimally in activated lymphocytes. The increase in Neu1 enzyme activity correlated with increased synthesis of Neu1-specific mRNA. Neu1 was present on the surface of freshly isolated and activated CD4 and CD8 T lymphocytes, as determined by staining intact cells with anti-Neu1 IgG and analysis by flow cytometry and by Western blot analysis of biotin-labeled cell surface proteins. Cell surface Neu1 was found tightly associated with a subunit of protective protein/cathepsin A (PPCA). Compared with freshly isolated lymphocytes, activated cells expressed more surface binding sites for galactose-recognizing lectins Erythrina cristagalli (ECA) and Arachis hypogaea. Growth of cells in the presence of sialidase inhibitors 2,3-dehydro-2-deoxy-N-acetylneuraminic acid or 4-guanidino-2-deoxy-2,3-dehydro-N-acetylneuraminic acid resulted in a smaller increase in number of ECA-binding sites and a greater amount of cell surface sialic acid in activated cells. Inhibition of sialidase activity also resulted in reduced expression of IFN-gamma in activated cells. The down-regulation of IFN-gamma occurred at the transcriptional level. Thus, sialidase activity in activated T lymphocytes contributes to the hyposialylation of specific cell surface glycoconjugates and to the production of IFN-gamma.


Assuntos
Regulação Enzimológica da Expressão Gênica , Interferon gama/metabolismo , Ativação Linfocitária , Neuraminidase/metabolismo , Linfócitos T/enzimologia , Células Cultivadas , Citocinas/metabolismo , Glicoconjugados/metabolismo , Humanos , Ácido N-Acetilneuramínico , Linfócitos T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...